University of Asia Pacific (UAP) Department of Computer Science and Engineering (CSE)

Course Outline

Program:	Computer Science and Engineering (CSE)
Course Title:	Computer Graphics Lab
Course Code:	CSE 426
Semester:	Fall 2020
Level:	8 th Semester (4 th Year, 2 nd Semester)
Credit Hour:	1.5
Name & Designation of Teacher:	S M Rafiuddin Rifat, Lecturer
Office/Room:	7 th Floor, Teachers' Area
Class Hours:	Section A2 B1: Sunday: 9:30AM – 12:20PM Section C2: Sunday: 3:00PM - 5:00PM Section B2 C1: Monday: 9:30AM – 12:20PM Section A1: Monday: 9:30AM - 12:20PM
Consultation Hours:	Section A2 B1 + C2: Sunday: 5:00PM – 6:15PM Section B2 C1 + A1: Monday: 6:30PM – 7:45PM
E-mail:	rifat.cse@uap-bd.edu
Mobile:	+8801737775379
Rationale:	The goal of this course is to provide an introduction of the application to the theory and practice of computer graphics. The course will assume a good background in programming in C or $C++$ and a background in mathematics including familiarity with the theory and use of coordinate geometry and of linear algebra.
Pre-requisite (if any):	Students are expected to complete the following courses— MTH 205 (Math IV), CSE 103 (Discrete Mathematics)

Course Synopsis:	Standard Graphics Primitives, Graphical User Interface; Graphics
	Hardware: Display devices, Raster refresh graphics display Use of
	frame buffer and look up table. Coordinate convention: Device
	coordinate and wild coordinate system. Raster Scan Graphics:
	Mid-point Line and Circle Creation Algorithms, Animalizing.
	Polygons: Difference type of polygons, Point location, polygon
	filling, triangulation Windowing and Clipping, Window
	Viewpoint, Zooming, panning, line text and polygon, clipping.
	Transformation: Homogeneous coordination, Transformation
	matrices, Transformation in 2D, Translation, rotation, sealing,
	Transformation in 3D translation, rotation, scaling. Projection:
	Parallel and perspective, isometric projection. Three-dimensional
	Viewing and representation: Curves, surfaces and volumes with
	cubic and bi cubic spines, B-Reb, CSG, Spatial Occupancy
	Representations. Hidden Lines and Surface removal: Painter's
	algorithm, Z-Buffering. Rendering: Light Models, Shading
	Interpolation Technique constant, Ground and Phong, Ray
	Tracing. Image File Format: PPM file, BMP file. Introduction to
	Graphics Programming: The nature of computer animation.
	simulation, kinematics, barometries, dynamics, and meta-
	morphosis.
Course Objectives:	The objectives of this course are to—

- 1. Provide knowledge and understanding on principles of Computer Graphics.
- 2. Introduce the concept of different types of transformation and projection.
- 3. Emphasize the design and implement of different types computer graphics and animation techniques to simulate the real world.

Course Outcomes (CO) and their mapping with Program outcomes (PO) and Teaching-Learning Assessment methods:

СО	CO Statements:	Corresponding	Bloom's	Delivery	Assessment
No.	Upon successful completion of	POs	taxonomy	methods	Tools
	the course, students should be	(Appendix-1)	domain/level	and	
	able to—		(Appendix-2)	activities	
CO 1	Understand the objectives,	1	Cognitive /	Lecture,	Quiz
	terminology associated with		Understand	Group	
	Computer Graphics.			discussion	
CO 2	Apply the techniques and	2, 5	Cognitive /	Problem	Quiz, Lab
	algorithms of Computer Graphics		Apply	Solving	Test
	and Data Visualization.			-	
CO 3	Design the methodologies of	3, 9, 10	Cognitive /	Project	Assignment
	Computer Graphics on data		Analyze		
	visualization of various geometric				
	objects of both 2D and 3D objects.				

Weighting COs with Assessment methods:

Assessment Type	% weight	CO1	CO2	CO3
Assessment	50%			
Project	50%			
Total	100%			

Grading Policy: As per the approved grading policy of UAP (Appendix-3)

Course Content Outline and mapping with COs

Lecture	Торіс	Course Outcome	Delivery methods and activities	Reading assignment
Lecture 1	OpenGL basic syntax and environment setup. Points, line, triangle, quads, polygon drawing using OpenGL.	CO1	Lecture, Group discussion	An introduction to Graphics Programming in OpenGL, Chapter 2, 3
Lecture 2	Translation, scaling and rotation of 2D objects in OpenGL. Complex shape changing of 2D objects using OpenGL.	CO1, CO2	Lecture, Problem Solving	An introduction to Graphics Programming in OpenGL, Chapter 4, 5
Lecture 3	Create groups of 2 members and assign Projects. Introduction to Unity Game Engine. Hand on experience in Unity.	CO1, CO2	Lecture, Problem Solving	Web Content
Lecture 4	Unity Programming Introduction in C#. Problem Assignment: Syntax and Basic C# programming in Unity.	CO1, CO3	Lecture, Problem Solving	Web Content
Lecture 5	Movement and Camera flow in Unity.	CO3	Lecture, Problem Solving	Web Content

	Problem Assignment:			
	Viewing Objects from			
	different aspects and			
	position and camera view.			
	Collision Simulation in	CO2, CO3	Lecture, Problem	
	Unity.		Solving	
Lecture 6	Problem Assignment:			Web Content
	Collision simulation			
	between two objects.			
		Mid Term Exan	nination	
	Animations in Unity.	CO3, CO4	Lecture, Problem	
	Problem assignment:		Solving	
Lecture 7	Apply the projection			Web Content
	technique in animations.			
	Simulations in Unity.	CO3, CO4	Lecture, Problem	
Lastuma 9	Problem Assignment:		Solving	Web Content
Lecture 8	Using Physics feature and			web Content
	apply it in simulation.			
	Movement of objects.	CO3, CO4	Lecture, Problem	
L a atuma O	Problem Assignment:		Solving	Web Content
Lecture 9	Apply Movement is a game			web Content
	idea.			
	Game UI.	CO3, CO4	Lecture, Problem	
Lecture 10	Updates on Game		Solving	Web Content
	development project.			
	Console Design.	CO3, CO4	Lecture, Problem	
Lecture 11	Problem assignment: Game		Solving	Web Content
	controls.			
	Data Visualization in	CO4, CO 5	Lecture, Problem	
Lecture 12	Python using Matplotlib.		Solving	Web Content
	Project Submission.			
	•	Final Examir	nation	

Required References: An introduction to Graphics Programming in OpenGL, Toby Howard

Special Instructions:

- Minimum Required Attendance is 70%
- No make-up for quizzes and mid-term exam
- Plagiarism policy: zero tolerance in case of plagiarism

Prepared by	Checked by	Approved by
S M Definddin Difet	Chairman DSAC committee	Head of the Department
S IVI Kanudulli Kilat	Channan, r SAC commutee	nead of the Department

(Course Teacher)	

<u>Appendix-1:</u> Washington Accord Program Outcomes (PO) for engineering programs:

No.	РО	Differentiating Characteristic
1	Engineering Knowledge	Breadth and depth of education and type of knowledge,
		both theoretical and practical
2	Problem Analysis	Complexity of analysis
3	Design/ development of solutions	Breadth and uniqueness of engineering problems i.e. the
		extent to which problems are original and to which
		solutions have previously been identified or codified
4	Investigation	Breadth and depth of investigation and experimentation
5	Madam Taal Usaa	
5	Modern Tool Usage	Level of understanding of the appropriateness of the tool
6	The Engineer and Society	Level of knowledge and responsibility
-	8	
7	Environment and Sustainability	Type of solutions.
8	Ethics	Understanding and level of practice
9	Individual and Team work	Role in and diversity of team
10	Communication	Level of communication according to type of activities
		performed
11	Project Management and Finance	Level of management required
		for differing types of activity
12	Lifelong learning	Preparation for and depth of Continuing learning.

Appendix-2

Bloom's Taxonomy (Taxonomy of Learning) **3 Domains**

L.	Ų	Ţ
(1)	(2)	(3)
Cognitive	Psychomotor	Affective
(Knowledge)	(Skill)	(Attitude)
Remember	Imitation	Receiving
Understand	Manipulation	Responding
Apply	Precision	Valuing
Analyze	Articulation	Organization
Evaluate	Naturalization	Characterization
Create		

Appendix-3

UAP Grading Policy:

Numeric Grade	Letter Grade	Grade Point
80% and above	A+	4.00

75% to less than 80%	А	3.75
70% to less than 75%	A-	3.50
65% to less than 70%	B+	3.25
60% to less than 65%	В	3.00
55% to less than 60%	В-	2.75
50% to less than 55%	C+	2.50
45% to less than 50%	С	2.25
40% to less than 45%	D	2.00
Less than 40%	F	0.00